Chapter 4

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Which of the following compounds is a *weak electrolyte*?
 - A. HNO₃
 - B. NaNO₃
 - C. HNO₂
 - D. NaNO₂
- 2. Which of the following compounds is a *strong electrolyte*?
 - A. H₂O
 - B. N₂
 - C. CH₃COOH (acetic acid)
 - D. KOH
 - 3. Identify the *major* ionic species present in an aqueous solution of NH₄ClO₄.
 - A. NH₄⁺, Cl⁻, 4O²⁻
 - B. N³⁻, 4H⁺, Cl⁻, 4O²⁻
 - C. 4NH⁺, 4ClO⁻
 - D. NH_4^+ , ClO_4^-
- 4. Identify the *major* ionic species present in an aqueous solution of FeCl₃.
 - A. Fe⁺, Cl₃⁻
 - B. Fe^{3+} , Cl_3^{3-}
 - C. Fe³⁺, 3 Cl⁻
 - D. Fe²⁺, 3 Cl⁻

5. Based on the solubility rules, which one of the following compounds should be *insoluble* in water?

- A. NaCl
- B. MgBr₂
- C. $FeCl_2$
- D. AgBr
- 6. Based on the solubility rules, which of the following compounds should be *insoluble* in water?
 - A. Na₂SO₄
 - B. BaSO₄
 - C. $CuSO_4$
 - D. MgSO₄
- 7. Based on the solubility rules, which of the following should be *soluble* in water?
 - A. $CaSO_4$
 - B. $BaSO_4$
 - C. PbSO₄
 - $D. \quad KK_2SO_4$
 - 8. Which of the following will occur when a solution of Pb(NO₃)₂(aq) is mixed with a solution of KI(aq) ?
 - A. A precipitate of KNO₃ will form; Pb^{2+} and I^{-} are spectator ions.
 - B. No precipitate will form.
 - C. A precipitate of $Pb(NO_3)_2$ will form; K⁺ and I⁻ are spectator ions.
 - D. A precipitate of PbI_2 will form; K⁺ and NO_3^- are spectator ions.
 - 9. Which of the following will occur when solutions of $CuSO_4(aq)$ and $BaCl_2(aq)$ are mixed?
 - A. A precipitate of $CuCl_2$ will form; Ba^{2+} and SO_4^{2-} are spectator ions.
 - B. A precipitate of CuSO₄ will form; Ba²⁺ and Cl⁻ are spectator ions.
 - C. A precipitate of BaSO₄ will form; Cu²⁺ and Cl⁻ are spectator ions.
 - D. A precipitate of $BaCl_2$ will form; Cu^{2+} and SO_4^{2-} are spectator ions.

- 10. Identify the precipitate(s) formed when solutions of NH₄Cl(aq), AgClO₃(aq), and NaCl(aq) are mixed.
 - A. AgCl
 - B. AgCl and NH₄ClO₃
 - C. NH₄Cl and NaClO₃
 - $D. \quad NH_4ClO_3$
- 11. Identify the precipitate(s) formed when solutions of Ca(ClO₄)₂(aq), K₂CO₃(aq), and NaNO₃(aq) are mixed.
 - A. CaCO₃
 - B. Na₂CO₃
 - C. $Ca(NO_3)_2$ and $NaClO_4$
 - D. CaCO₃ and Na₂CO₃
 - 12. Identify the correct *net ionic equation* for the reaction that occurs when solutions of $Pb(NO_3)_2$ and NH_4Cl are mixed.
 - A. $Pb(NO_3)_2(aq) + 2NH_4Cl(aq) \rightarrow NH_4NO_3(aq) + PbCl_2(s)$
 - B. $Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_2(s)$
 - C. $Pb^{2+}(aq) + 2NO_3^{-}(aq) + 2NH_4^{+}(aq) + 2Cl^{-}(aq) \rightarrow 2NH_4^{+}(aq) + 2NO_3^{-}(aq) + PbCl_2(s)$
 - D. $NH_4^+(aq) + NO_3^-(aq) \rightarrow 2NH_4NO_3(s)$
- 13. Identify the correct *net ionic equation* for the reaction that occurs when solutions of AgNO₃ and NH₄Cl are mixed.
 - A. $AgNO_3(aq) + NH_4Cl(aq) \rightarrow AgCl(s) + NH_4Cl(aq)$
 - B. $NH_4^+(aq) + NO_3^-(aq) \rightarrow NH_4NO_3(s)$
 - C. $AgNO_3(aq) + NH_4Cl(aq) \rightarrow AgCl(s) + NH_4Cl(s)$
 - D. $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$

- _____ 14. The common constituent in all acid solutions is
 - $A. \quad H_2$
 - $B. \quad H^+$
 - $C. \quad OH^-$
 - $D. \quad H_2SO_4$
- _____ 15. Which of the following compounds is a *weak acid*?
 - A. HF
 - B. HCl
 - C. HBr
 - D. HI
 - 16. Which of the following compounds is a *strong acid*?
 - A. HF
 - B. HI
 - $C. \quad HClO_2$
 - $D. \quad H_2SO_3$
- 17. Which of the following compounds is a *weak base*?
 - A. KOH
 - B. $Sc(OH)_3$
 - C. NH₃
 - $D. \quad NH_4{}^+$
- _____ 18. Which of the following ions is a *weak acid*?
 - A. SO₄²⁻
 - $B. \quad H_2SO_4$
 - C. HSO_4^-
 - $D. \quad HNO_3$

Name: _____

 19.	Identify the correct <i>net ionic equation</i> for the reaction that occurs when solutions of HNO ₃ and KOH are mixed?
	A. $HNO_3(aq) + KOH(aq) \rightarrow H_2O(l) + KNO_3(aq)$
	B. $K^+(aq) + NO_3^-(aq) \rightarrow KNO_3(aq)$
	C. $HNO_3(aq) + KOH(aq) \rightarrow H_2O(l) + KNO_3(s)$
	D. $H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$
 20.	The oxidation number of S in K ₂ SO ₄ is
	A. +6
	B. +4
	C. +2
	D1
 21.	The oxidation number of Fe in $K_3Fe(CN)_6$ is
	A. +3
	B. +2
	C. +1
	D3
 22.	The oxidation number of Cr in $Cr_2O_7^{2-}$ is
	A12
	B7
	C. –2
	D. +6
 23.	For which one of the following acids is chlorine in the +5 oxidation state?
	A. HCl
	B. HCIO
	C. HClO ₂
	D. $HClO_3$

- _____ 24. The highest possible oxidation number of carbon is
 - A. +8
 - B. +6
 - C. +4
 - D. +2
- $_$ 25. The oxidation number of N in N₂H₄ is
 - A. +4
 - B. -4
 - C. +2
 - D. –2
 - $_$ 26. Determine the correct oxidation numbers for all three elements in Rb₂SO₃ in the order that the elements are shown in the formula.
 - A. -2, +6, -2
 - B. −1, +4, −3
 - C. +2, +4, -2
 - D. +1, +4, -2
 - _ 27. Using the redox reaction below determine which element is oxidized and which is reduced.

 $4NH_3 + 3Ca(ClO)_2 \rightarrow 2N_2 + 6H_2O + 3CaCl_2$

- A. H is oxidized and N is reduced
- B. N is oxidized and Cl is reduced
- C. N is oxidized and O is reduced
- D. Cl is oxidized and O is reduced

_____ 28. How many total electrons are transferred in the following reaction?

 $4 \text{ P(s)} + 5\text{O}_2(g) \rightarrow 2\text{P}_2\text{O}_5(s)$

- A. 5
- B. 10
- C. 15
- D. 20
- ____ 29. Which one of the following is a *redox* reaction?
 - A. $2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$
 - B. $2KBr(aq) + Pb(NO_3)_2(aq) \rightarrow 2KNO_3(aq) + PbBr_2(s)$
 - C. $CaBr_2(aq) + H_2SO_4(aq) \rightarrow CaSO_4(s) + 2HBr(g)$
 - D. $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$
- _____ 30. Which of the following equations does *not* represent an oxidation-reduction reaction?
 - A. $3Al + 6HCl \rightarrow 3H_2 + AlCl_3$
 - B. $2H_2O \rightarrow 2H_2 + O_2$
 - C. $2NaCl + Pb(NO_3)_2 \rightarrow PbCl_2 + 3NaNO_3$
 - D. $2NaI + Br_2 \rightarrow 2NaBr + I_2$
- _____ 31. In the following chemical reaction the *oxidizing agent* is

 $5\mathrm{H}_{2}\mathrm{O}_{2}+2\mathrm{MnO}_{4^{-}}+6\mathrm{H}^{\scriptscriptstyle +}\rightarrow 2\mathrm{Mn}^{2\scriptscriptstyle +}+8\mathrm{H}_{2}\mathrm{O}+5\mathrm{O}_{2}$

- A. H_2O_2
- $B. \quad MnO_4^-$
- C. H⁺
- $D. \quad Mn^{2+}$

32.	Identify the oxidizing agent in the following chemical reaction.
	$2MnO_4^- + 5H_2SO_3 \rightarrow 2Mn^{2+} + 5SO_4^{2-} + 4H^+ + 3H_2O$
	A. MnO_4^-
	B. H_2SO_3
	C. Mn ²⁺
	D. SO ₄ ²⁻
33.	Identify the <i>reducing agent</i> in the following chemical reaction.
	$5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(l)$
	A. Fe^{2+}
	B. MnO_4^-
	C. H ⁺
	D. Mn ²⁺
34.	What element is <i>oxidized</i> in the following chemical reaction?
	$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$
	A. Cu
	B. H
	C. N
	D. O
35.	What element is <i>reduced</i> in the following chemical reaction?
	$Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
	A. Cu
	B. H
	C. S
	D. 0

- _____ 36. Predict the products of the following single replacement reaction.
 - $Fe(s) + CuSO_4(aq) \rightarrow$
 - A. $Cu(s) + FeSO_4(aq)$
 - B. $Fe(s) + Cu(s) + SO_4(aq)$
 - C. $CuS(s) + Fe_2SO_4(aq)$
 - D. FeCuSO₄(aq)
- _____ 37. Predict the products of the following single replacement reaction.
 - $Zn(s) \ + \ CoCl_2(aq) \ \rightarrow \label{eq:cocl}$
 - A. No reaction occurs
 - B. $Co(s) + ZnCl_2(aq)$
 - C. CoCl(aq) + ZnCl(aq)
 - D. $ZnCo(aq) + Cl_2(g)$
- _____ 38. Which of the following is an example of a *disproportionation reaction*?
 - A. $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$
 - B. $2KBr(aq) + Cl_2(g) \rightarrow 2KCl(aq) + Br_2(l)$
 - C. $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
 - D. $CaBr_2(aq) + H_2SO_4(aq) \rightarrow CaSO_4(s) + 2HBr(g)$
- _____ 39. Which of the following represents a *precipitation reaction*?
 - A. $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
 - B. $CaBr_2(aq) + H_2SO_4(aq) \rightarrow CaSO_4(s) + 2HBr(g)$
 - C. $2KNO_3(s) \rightarrow 2KNO_2(s) + O_2(g)$
 - D. $2KBr(aq) + Cl_2(g) \rightarrow 2KCl(aq) + Br_2(l)$

- 40. Which of the following represents an *acid-base neutralization reaction*?
 - A. $2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$
 - B. $SO_2(g) + H_2O(l) \rightarrow H_2SO_3(g)$
 - C. $LiOH(aq) + HNO_3(aq) \rightarrow LiNO_3(aq) + H_2O(l)$
 - D. $2KBr(aq) + Cl_2(g) \rightarrow 2KCl(aq) + Br_2(l)$
- 41. Which of the following represents a *combustion reaction*?
 - A. $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$
 - B. $LiOH(aq) + HNO_3(aq) \rightarrow LiNO_3(aq) + H_2O(l)$
 - C. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - D. $2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$
 - _____ 42. What type of reaction is the following?

 $Ca(OH)_2(s) + 2 HNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + 2 H_2O(l)$

- A. Combination reaction
- B. Acid-base neutralization reaction
- C. Hydrogen displacement reaction
- D. Disproportionation reaction
- 43. What mass of $C_6H_{12}O_6$ (glucose) is needed to prepare 450. mL of a 0.650 M solution of glucose in water?
 - A. 0.293 g
 - B. 293 g
 - C. 0.692 g
 - D. 52.7 g

Name:

44. What mass of K_2CO_3 is needed to prepare 200. mL of a solution having a potassium ion concentration of 0.150 M?

- A. 4.15 g
- B. 10.4 g
- C. 13.8 g
- D. 2.07 g
- 45. A 50.0 mL sample of 0.436 M NH₄NO₃ is diluted with water to a total volume of 250.0 mL. What is the ammonium nitrate concentration in the resulting solution?
 - A. 21.8 M
 - B. 0.459 M
 - C. $2.18 \times 10^{-2} \text{ M}$
 - D. $8.72 \times 10^{-2} \text{ M}$
 - 46. A 4.691 g sample of $MgCl_2$ is dissolved in enough water to give 750. mL of solution. What is the magnesium ion concentration in this solution?
 - A. 3.70×10^{-2} M
 - B. $1.05 \times 10^{-2} \text{ M}$
 - C. $6.57 \times 10^{-2} \text{ M}$
 - D. $4.93 \times 10^{-2} \text{ M}$
- 47. 35.0 mL of 0.255 M nitric acid is added to 45.0 mL of 0.328 M Mg(NO₃)₂. What is the concentration of nitrate ion in the final solution?
 - A. 0.481 M
 - B. 0.296 M
 - C. 0.854 M
 - D. 1.10 M

- 48. 17.5 mL of a 0.1050 M Na₂CO₃ solution is added to 46.0 mL of 0.1250 M NaCl. What is the concentration of sodium ion in the final solution?
 - A. 0.205 M
 - B. 0.119 M
 - C. 0.539 M
 - D. 0.148 M
- 49. A 350. mL solution of 0.150 M HNO₃(aq) is mixed with a solution of 230. mL of 0.240 M HCl(aq). How many moles of H⁺(aq) are present in the final solution?
 - A. 0.0525 moles H⁺
 - B. 0.108 moles H⁺
 - C. 0.186 moles H⁺
 - D. $0.0539 \text{ moles } H^+$
 - 50. When 38.0 mL of 0.1250 M H₂SO₄ is added to 100. mL of a solution of PbI₂, a precipitate of PbSO4 forms. The PbSO₄ is then filtered from the solution, dried, and weighed. If the recovered PbSO₄ is found to have a mass of 0.0471 g, what was the concentration of iodide ions in the original solution?
 - A. 3.10×10^{-4} M
 - B. 1.55×10^{-4} M
 - C. 6.20×10^{-3} M
 - D. $3.11 \times 10^{-3} \text{ M}$
 - 51. What volume (mL) of a 0.3428 M HCl(aq) solution is required to completely neutralize 23.55 mL of a 0.2350 M Ba(OH)₂(aq) solution?
 - A. 55.34 mL
 - B. 11.07 mL
 - C. 16.14 mL
 - D. 32.29 mL

52. One method of determining the concentration of hydrogen peroxide (H_2O_2) in a solution is through titration with the iodide ion. The net ionic equation for this reaction is

 $H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O$

A 50.00 mL sample of a hydrogen peroxide solution is found to react completely with 37.12 mL of a 0.1500 M KI solution. What is the concentration of hydrogen peroxide in the sample?

- A. 5.568×10^{-2} M
- B. 0.2227 M
- C. 0.1010 M
- D. 0.4041 M
- 53. Lithium metal dissolves in water to yield hydrogen gas and aqueous lithium hydroxide. What is the final concentration of hydroxide ions when 5.500 g of lithium metal is dropped into 750. mL of water?
 - A. 1.06 M
 - B. 0.528 M
 - C. 2.11 M
 - D. 0.792 M
 - 54. When solid iron(II) hydroxide is added to water, the resulting solution contains 1.4×10^{-3} g of dissolved iron(II) hydroxide per liter of solution. What is the hydroxide ion concentration in this solution?
 - A. 7.8×10⁻⁶ M
 - B. 1.6×10⁻⁵ M
 - C. 2.5×10⁻¹⁰ M
 - D. 3.1×10⁻⁵ M

- 55. A 250. mL sample of 0.0328M HCl is partially neutralized by the addition of 100. mL of 0.0245M NaOH. Find the concentration of hydrochloric acid in the resulting solution.
 - A. 0.00700 M
 - B. 0.0164 M
 - C. 0.0383 M
 - D. 0.0230 M

Short Answer

- 1. Define the terms *solution*, *solute*, and *solvent*.
- 2. Identify the following compound as a *strong electrolyte, weak electrolyte*, or *nonelectrolyte*: Al(NO₃)₃
- 3. Identify the following compound as a *strong electrolyte*, *weak electrolyte*, or *nonelectrolyte*: NH₄NO₃
- 4. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: H₂CO₃
- 5. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: NH₃.
- 6. Identify the precipitate(s) formed when solutions of Na₃PO₄(aq), Ca(NO₃)₂(aq), and NH₄ClO₃(aq) are mixed.
- 7. Give an example of a *monoprotic acid*.
- 8. Give an example of a *diprotic acid*.
- 9. Give an example of a *triprotic acid*.
- 10. Identify the element being *oxidized* in the following reaction.

$$4\mathrm{Al} + 3\mathrm{O}_2 \rightarrow 2\mathrm{Al}_2\mathrm{O}_3$$

11. Identify the element being *reduced* in the following reaction.

 $4Al + 3O_2 \rightarrow 2Al_2O_3$

12. Identify the *oxidizing agent* in the following reaction.

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$

13. Identify the *reducing agent* in the following reaction.

 $4Al + 3O_2 \rightarrow 2Al_2O_3$

14. Identify the *oxidizing agent* in the following reaction.

$$2KBr + F_2 \rightarrow Br_2 + 2KF$$

15. Identify the *reducing agent* in the following reaction.

$$2\text{KBr} + \text{F}_2 \rightarrow \text{Br}_2 + 2\text{KF}$$

- 16. Determine the oxidation number of each of the elements in $BaNaPO_4$?
- 17. Batteries in our cars generate electricity by the following chemical reaction.

 $Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$

Which substance is *reduced* in this process?

18. Batteries in our cars generate electricity by the following chemical reaction.

$$Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$$

What is the *reducing agent* in this process?

19. Batteries in our cars generate electricity by the following chemical reaction.

 $Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$

Which substance is *oxidized* in this process?

20. Batteries in our cars generate electricity by the following chemical reaction.

$$Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$$

What is the oxidizing agent in this process?

21. Categorize the following reaction as an *acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation* reaction.

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

22. Categorize the following reaction as an *acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation* reaction.

 $Ba(C_2H_3O_2)_2(aq) + Na_2CO_3(aq) \rightarrow BaCO_3(s) + 2 NaC_2H_3O_2(aq)$

23. Categorize the following reaction as an *acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation* reaction.

 $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$

24. Categorize the following reaction as an *acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation* reaction.

 $H_2SO_4(aq) + 2 \text{ KOH}(aq) \rightarrow 2 H_2O(l) + K_2SO_4(aq)$

- 25. What is the molarity of a solution that contains 5.0 moles of solute in 2.00 liters of solution?
- 26. The solubility of Ba(NO₃)₂ is 130.5 grams per liter at 0°C. How many moles of dissolved salt are present in 4.0 liters of a saturated solution of Ba(NO₃)₂ at 0°C?
- 27. What is the molar concentration of chloride ions in a solution prepared by mixing 100. mL of 2.0 M KCl with 50. mL of a 1.5 M CaCl₂ solution?
- 28. What volume of concentrated nitric acid (15.0 M) is required to make 100. mL of a 3.0 M nitric acid solution?
- 29. During a titration the following data were collected. A 10. mL portion of an unknown monoprotic acid solution was titrated with 1.0 M NaOH; 40. mL of the base were required to neutralize the sample. What is the molarity of the acid solution?
- 30. If 145 grams of potassium nitrate were added to water to make 1,500 mL of solution. What would the molarity of the resulting solution be?
- 31. During a titration the following data were collected. A 50.0 mL portion of an HCl solution was titrated with 0.500 M NaOH; 200. mL of the base was required to neutralize the sample. How many grams of HCl are present in 500. mL of this acid solution?
- 32. Which substance is acting as a Brønsted acid in the following reaction?

 $HSO_4^- + NH_4^+ \rightarrow H_2SO_4 + NH_3$

33. Identify the Brønsted acid in the following reaction.

 $HSO_4^- + NH_4^+ \rightarrow H_2SO_4 + NH_3$

- 34. Write the balanced molecular and net ionic equations for the reaction that would occur between $CaCl_2(aq)$ and $Na_2CO_3(aq)$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
- 35. Write the balanced molecular and net ionic equations for the reaction that would occur between Al(s) and $Co(NO_3)_2(aq)$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
- 36. A piece of copper metal was added to an aqueous solution of silver nitrate, and within a few minutes it was observed that a grey crystalline solid formed on surface of the copper. The solution turned a blue color characteristic of copper(II) ions.Write the balanced chemical equation for this reaction.
- 37. A piece of lead metal was added to an aqueous solution of copper(II) nitrate, and within a few minutes it was observed that the lead turned black and crumbled. The characteristic blue solution of copper (II) ions had faded.. (NOTE: Lead forms a 2+ ion when it reacts.)Write the balanced chemical equation for this reaction.
- 38. A piece of zinc metal was added to an aqueous solution of lead(II) nitrate. After some time it was observed that the zinc metal appeared to fall apart and a solid had accumulated at the bottom of the reaction vessel.

Write the net ionic equation for this reaction.

39. The following experiments were carried out and observations recorded.

Expt. #1: copper metal was added to an aqueous solution of silver nitrate *Observation:* The copper become coated with a substance.
Expt. #2: lead metal was added to an aqueous solution of copper(II) nitrate *Observation:* The lead turned black and crumbled.
Expt. #3: zinc metal was added to an aqueous solution of lead(II) nitrate *Observation:* The zinc appeared to fall apart.

Rank the metals from most active to least active.

N	0 m	^	
1N	am	e	•

True/False

Indicate whether the statement is true or false.

- 1. Sugar dissolves in water, therefore it is a strong electrolyte.
- 2. Silver chloride (AgCl) has an extremely low solubility in water; therefore, it is a weak electrolyte.
- 3. Most compounds containing chlorides, bromides, and iodides are soluble except those containing Ag^+ , Hg_2^{2+} , and Pb^{2+} .
- 4. The following equation is an example of a net ionic equation.

 $Na^{+}(aq) + Br^{-}(aq) + Ag^{+}(aq) + NO_{3}^{-}(aq) \rightarrow AgBr(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$

5. The oxidation number of iodine increases by 6 in the following reaction.

 $2MnO_4^- + I^- + H_2O \rightarrow 2MnO_2 + IO_3^- + 2OH^-$

6. A weak acid or a weak base ionizes completely.

Chapter 4

Answer Section

MULTIPLE CHOICE

1.	ANS: OBJ:	C EK.2.A.3	PTS:	1	DIF:	Easy	REF:	Section: 4.1
2.	ANS: OBJ:	D EK.2.A.3	PTS:	1	DIF:	Easy	REF:	Section: 4.1
3.	ANS: OBJ:	D EK.3.C.1	PTS:	1	DIF:	Easy	REF:	Section: 4.1
4.	ANS: OBJ:	C EK.3.C.1	PTS:	1	DIF:	Easy	REF:	Section: 4.1
5.	ANS: OBJ:	D EK.3.C.1	PTS:	1	DIF:	Easy	REF:	Section: 4.2
6.	ANS: OBJ:	В ЕК.3.С.1	PTS:	1	DIF:	Easy	REF:	Section: 4.2
7.	ANS: OBJ:	D EK.3.C.1	PTS:	1	DIF:	Easy	REF:	Section: 4.2
8.	ANS: OBJ:	D EK.3.C.1	PTS:	1	DIF:	Medium	REF:	Section: 4.2
9.	ANS: OBJ:	C EK.3.C.1	PTS:	1	DIF:	Medium	REF:	Section: 4.2
10.	ANS: OBJ:	A EK.3.C.1	PTS:	1	DIF:	Medium	REF:	Section: 4.2
11.	ANS: OBJ:	A EK.3.C.1	PTS:	1	DIF:	Medium	REF:	Section: 4.2
12.	ANS: OBJ:	В ЕК.3.А.1	PTS:	1	DIF:	Medium	REF:	Section: 4.2
13.	ANS: OBJ:	D EK.3.A.1	PTS:	1	DIF:	Medium	REF:	Section: 4.2
14.	ANS: OBJ:	B EK.3.B.2	PTS:	1	DIF:	Easy	REF:	Section: 4.3
15.	ANS: OBJ:	A EK.3.B.2	PTS:	1	DIF:	Easy	REF:	Section: 4.3
16.	ANS: OBJ:	B EK.3.B.2	PTS:	1	DIF:	Easy	REF:	Section: 4.3
17.	ANS: OBJ:	C EK.3.B.2	PTS:	1	DIF:	Easy	REF:	Section: 4.3
18.	ANS: OBJ:	C EK.3.B.2	PTS:	1	DIF:	Easy	REF:	Section: 4.3
19.	ANS: OBJ:	D EK.3.A.1	PTS:	1	DIF:	Medium	REF:	Section: 4.3
20.	ANS: OBJ:	A EK.3.B.3	PTS:	1	DIF:	Medium	REF:	Section: 4.4

21.	ANS:	A EK.3.B.3	PTS:	1	DIF:	Medium	REF:	Section: 4.4
22.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
23.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
24.	ANS:		PTS:	1	DIF:	Easy	REF:	Section: 4.4
25.	ANS: OBJ:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
26.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
27.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
28.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
29.	ANS: OBJ:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
30.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
31.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
32.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
33.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
34.	ANS: OBJ:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
35.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
36.	ANS: OBJ:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
37.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
38.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
39.	ANS:		PTS:	1	DIF:	Easy	REF:	Section: 4.2
40.	ANS:		PTS:	1	DIF:	Easy	REF:	Section: 4.3
41.	ANS:		PTS:	1	DIF:	Easy	REF:	Section: 4.4
42.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.4
43.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.5
44.	ANS:		PTS:	1	DIF:	Medium	REF:	Section: 4.5

45.		D EK.2.A.3	PTS:	1	DIF:	Easy	REF:	Section: 4.5
46.	ANS: 0		PTS:	1	DIF:	Medium	REF:	Section: 4.5
47.	ANS: A		PTS:	1	DIF:	Difficult	REF:	Section: 4.5
48.	ANS: I		PTS:	1	DIF:	Difficult	REF:	Section: 4.5
49.	ANS: 1		PTS:	1	DIF:	Difficult	REF:	Section: 4.5
50.	ANS: I		PTS:	1	DIF:	Difficult	REF:	Section: 4.6
51.	ANS: I		PTS:	1	DIF:	Medium	REF:	Section: 4.7
52.	ANS: A		PTS:	1	DIF:	Medium	REF:	Section: 4.8
53.	ANS: A		PTS:	1	DIF:	Medium	REF:	Section: 4.8
54.	ANS: I	D	PTS:	1	DIF:	Difficult	REF:	Section: 4.5
55.	ANS: 1	EK.2.A.3 B EK.2.A.3	PTS:	1	DIF:	Difficult	REF:	Section: 4.7

SHORT ANSWER

1. ANS:

A solution is a homogeneous mixture of two or more substances.

The substance present in a smaller amount is called the *solute*, while the substance present in the larger amount is called the *solvent*.

2.	PTS: 1 ANS: strong electrolyte	DIF:	Easy	REF:	Section: 4.1	OBJ:	EK.2.A.3
3.	PTS: 1 ANS: strong electrolyte	DIF:	Easy	REF:	Section: 4.1	OBJ:	EK.2.A.3
4.	PTS: 1 ANS: weak electrolyte	DIF:	Easy	REF:	Section: 4.1	OBJ:	EK.2.A.3
	PTS: 1	DIF:	Easy	REF:	Section: 4.3	OBJ:	EK.2.A.3

```
5. ANS: weak electrolyte
```

6.	PTS: 1 ANS: $Ca_3(PO_4)_2$	DIF:	Medium	REF:	Section: 4.1	OBJ:	EK.2.A.3
7.	PTS: 1 ANS: HNO ₃ (for example		Medium	REF:	Section: 4.2	OBJ:	EK.3.C.1
8.	PTS: 1 ANS: H_2CO_3 (for example		Easy	REF:	Section: 4.3	OBJ:	EK.3.B.2
9.	PTS: 1 ANS: H ₃ PO ₄	DIF:	Easy	REF:	Section: 4.3	OBJ:	EK.3.B.2
10.	PTS: 1 ANS: Al	DIF:	Easy	REF:	Section: 4.3	OBJ:	EK.3.B.2
11.	PTS: 1 ANS: O	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
12.	PTS: 1 ANS: O ₂	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
13.	PTS: 1 ANS: Al	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
14.	PTS: 1 ANS: F ₂	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
	PTS: 1	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3

15. ANS: Br⁻ (or KBr)

16.	PTS: 1 ANS: the oxidation numb the oxidation numb	per of H			Section: 4.4		EK.3.B.3 the oxidation number of P is +5;
17.	PTS: 1 ANS: Pb ⁴⁺	DIF:	Easy	REF:	Section: 4.4	OBJ:	EK.3.B.3
18.	PTS: 1 ANS: Pb	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
19.	PTS: 1 ANS: Pb	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
20.	PTS: 1 ANS: PbO ₂	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
21.	PTS: 1 ANS: Combustion	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.3
22.	PTS: 1 ANS: Precipitation	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.1
23.	PTS: 1 ANS: Decomposition	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.C.1
	PTS: 1	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.B.1

24. ANS:

Acid-base neutralization

25.	PTS: 1 ANS: 2.5 M	DIF:	Medium	REF:	Section: 4.4	OBJ: EK.3.B.2
26.	PTS: 1 ANS: 2.0 moles	DIF:	Easy	REF:	Section: 4.5	OBJ: EK.2.A.3
27.	PTS: 1 ANS: 2.3 M	DIF:	Medium	REF:	Section: 4.5	OBJ: EK.2.A.3
28.	PTS: 1 ANS: 20. mL	DIF:	Difficult	REF:	Section: 4.5	OBJ: EK.2.A.3
29.	PTS: 1 ANS: 4.0 M	DIF:	Medium	REF:	Section: 4.5	OBJ: EK.2.A.3
30.	PTS: 1 ANS: 0.956 M	DIF:	Medium	REF:	Section: 4.7	OBJ: EK.2.A.3
31.	PTS: 1 ANS: 36.5 g	DIF:	Medium	REF:	Section: 4.5	OBJ: EK.2.A.3
32.	PTS: 1 ANS: NH4+	DIF:	Medium	REF:	Section: 4.7	OBJ: EK.3.A.2
33.	PTS: 1 ANS: H ₂ O	DIF:	Medium	REF:	Section: 4.3	OBJ: EK.3.B.2
	PTS: 1	DIF:	Medium	REF:	Section: 4.3	OBJ: EK.3.B.2

34.	ANS: Molecular equat	ANS: Molecular equation: $CaCl_2(aq) + Na_2CO_3(aq) \rightarrow CaCO_3(s) + 2NaCl(aq)$										
	Net ionic equation	on: $Ca^{2+}(a)$	aq) + CO_3^{2-}	$(aq) \rightarrow C$	CaCO ₃ (s)							
35.	PTS: 1 ANS: Molecular equat	ion: 2Al($O_3)_2(aq)$		₈ (aq) +						
	Net ionic equation: $2Al(s) + 3Co^{2+}(aq) \rightarrow 2Al^{3+}(aq) + 3Co(s)$											
36.	PTS: 1 ANS:	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.A.1					
	$Cu(s) + 2AgNO_{2}$	$_{3}(aq) \rightarrow 2$	Ag(s) + Cu($(NO_3)_2(a)$	q)							
37.	PTS: 1 ANS: Pb(s) + Cu(NOs)	DIF: $(2a) \rightarrow 0$			Section: 4.4	OBJ:	EK.3.C.1					
	$Pb(s) + Cu(NO_3)_2(aq) \rightarrow Cu(s) + Pb(NO_3)_2(aq)$											
38.	PTS: 1 ANS:	DIF:	Medium	REF:	Section: 4.4	OBJ:	EK.3.C.1					
	$Zn(s) + Pb^{2+}(aq)$	\rightarrow Zn ²⁺ (a	aq) + Pb(s)									
39.	PTS: 1 ANS:	DIF:	Difficult	REF:	Section: 4.4	OBJ:	EK.3.C.1					
	most active Zn,	next most	active Pb, r	next most	active Cu, le	ast acti	ve Ag					
	PTS: 1	DIF:	Difficult	REF:	Section: 4.4	OBJ:	EK.3.B.3					
TRUE/FALSE												
1.	ANS: F OBJ: EK.2.D.1	PTS:	1	DIF:	Medium	REF:	Section: 4.1					
2.	ANS: F OBJ: EK.2.D.1	PTS:	1	DIF:	Medium	REF:	Section: 4.1					
3.	ANS: T OBJ: EK.2.D.1	PTS:	1	DIF:	Easy	REF:	Section: 4.2					
4.	ANS: F	PTS:	1	DIF:	Medium	REF:	Section: 4.2					

4. ANS: F PTS: 1 DIF: Medium REF: Section: 4.2 OBJ: EK.3.A.1
5. ANS: T PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B.3
6. ANS: F PTS: 1 DIF: Medium REF: Section: 4.3 OBJ: EK.6.A.1