\qquad
\qquad Date: \qquad

Chapter 4

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Which of the following compounds is a weak electrolyte?
A. HNO_{3}
B. NaNO_{3}
C. HNO_{2}
D. NaNO_{2}
2. Which of the following compounds is a strong electrolyte?
A. $\mathrm{H}_{2} \mathrm{O}$
B. N_{2}
C. $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
D. KOH
\qquad 3. Identify the major ionic species present in an aqueous solution of $\mathrm{NH}_{4} \mathrm{ClO}_{4}$.
A. $\mathrm{NH}_{4}{ }^{+}, \mathrm{Cl}^{-}, 4 \mathrm{O}^{2-}$
B. $\mathrm{N}^{3-}, 4 \mathrm{H}^{+}, \mathrm{Cl}^{-}, 4 \mathrm{O}^{2-}$
C. $4 \mathrm{NH}^{+}, 4 \mathrm{ClO}^{-}$
D. $\mathrm{NH}_{4}^{+}, \mathrm{ClO}_{4}^{-}$
4. Identify the major ionic species present in an aqueous solution of FeCl_{3}.
A. $\mathrm{Fe}^{+}, \mathrm{Cl}_{3}{ }^{-}$
B. $\mathrm{Fe}^{3+}, \mathrm{Cl}_{3}{ }^{3-}$
C. $\mathrm{Fe}^{3+}, 3 \mathrm{Cl}^{-}$
D. $\mathrm{Fe}^{2+}, 3 \mathrm{Cl}^{-}$
5. Based on the solubility rules, which one of the following compounds should be insoluble in water?
A. NaCl
B. MgBr_{2}
C. FeCl_{2}
D. AgBr
\qquad 6. Based on the solubility rules, which of the following compounds should be insoluble in water?
A. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B. BaSO_{4}
C. CuSO_{4}
D. MgSO_{4}
\qquad 7. Based on the solubility rules, which of the following should be soluble in water?
A. CaSO_{4}
B. BaSO_{4}
C. PbSO_{4}
D. $\mathrm{KK}_{2} \mathrm{SO}_{4}$
\qquad 8. Which of the following will occur when a solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ is mixed with a solution of $\mathrm{KI}(\mathrm{aq})$?
A. A precipitate of KNO_{3} will form; Pb^{2+} and I^{-}are spectator ions.
B. No precipitate will form.
C. A precipitate of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ will form; K^{+}and I^{-}are spectator ions.
D. A precipitate of PbI_{2} will form; K^{+}and $\mathrm{NO}_{3}{ }^{-}$are spectator ions.
\qquad 9. Which of the following will occur when solutions of $\mathrm{CuSO}_{4}(\mathrm{aq})$ and $\mathrm{BaCl}_{2}(\mathrm{aq})$ are mixed?
A. A precipitate of CuCl_{2} will form; Ba^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
B. A precipitate of CuSO_{4} will form; Ba^{2+} and Cl^{-}are spectator ions.
C. A precipitate of BaSO_{4} will form; Cu^{2+} and Cl^{-}are spectator ions.
D. A precipitate of BaCl_{2} will form; Cu^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
10. Identify the precipitate(s) formed when solutions of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}), \mathrm{AgClO}_{3}(\mathrm{aq})$, and $\mathrm{NaCl}(\mathrm{aq})$ are mixed.
A. AgCl
B. AgCl and $\mathrm{NH}_{4} \mathrm{ClO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$ and NaClO_{3}
D. $\mathrm{NH}_{4} \mathrm{ClO}_{3}$
11. Identify the precipitate(s) formed when solutions of $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq}), \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})$, and $\mathrm{NaNO}_{3}(\mathrm{aq})$ are mixed.
A. CaCO_{3}
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and NaClO_{4}
D. CaCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
12. Identify the correct net ionic equation for the reaction that occurs when solutions of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ are mixed.
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{PbCl}_{2}(\mathrm{~s})$
B. $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})$
C. $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+$ $\mathrm{PbCl}_{2}(\mathrm{~s})$
D. $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$
13. Identify the correct net ionic equation for the reaction that occurs when solutions of AgNO_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ are mixed.
A. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
B. $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}-(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$
C. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
D. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
14. The common constituent in all acid solutions is
A. H_{2}
B. H^{+}
C. OH^{-}
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$
15. Which of the following compounds is a weak acid?
A. HF
B. HCl
C. HBr
D. HI
16. Which of the following compounds is a strong acid?
A. HF
B. HI
C. HClO_{2}
D. $\mathrm{H}_{2} \mathrm{SO}_{3}$
17. Which of the following compounds is a weak base?
A. KOH
B. $\mathrm{Sc}(\mathrm{OH})_{3}$
C. NH_{3}
D. $\mathrm{NH}_{4}{ }^{+}$
18. Which of the following ions is a weak acid?
A. $\mathrm{SO}_{4}{ }^{2-}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. HSO_{4}^{-}
D. HNO_{3}
19. Identify the correct net ionic equation for the reaction that occurs when solutions of HNO_{3} and KOH are mixed?
A. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KNO}_{3}(\mathrm{aq})$
B. $\mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})$
C. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KNO}_{3}(\mathrm{~s})$
D. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
20. The oxidation number of S in $\mathrm{K}_{2} \mathrm{SO}_{4}$ is
A. +6
B. +4
C. +2
D. -1
21. The oxidation number of Fe in $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ is
A. +3
B. +2
C. +1
D. -3
22. The oxidation number of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is
A. -12
B. -7
C. -2
D. +6
23. For which one of the following acids is chlorine in the +5 oxidation state?
A. HCl
B. HClO
C. HClO_{2}
D. HClO_{3}
24. The highest possible oxidation number of carbon is
A. +8
B. +6
C. +4
D. +2
25. The oxidation number of N in $\mathrm{N}_{2} \mathrm{H}_{4}$ is
A. +4
B. -4
C. +2
D. -2
26. Determine the correct oxidation numbers for all three elements in $\mathrm{Rb}_{2} \mathrm{SO}_{3}$ in the order that the elements are shown in the formula.
A. $-2,+6,-2$
B. $-1,+4,-3$
C. $+2,+4,-2$
D. $+1,+4,-2$
27. Using the redox reaction below determine which element is oxidized and which is reduced.

$$
4 \mathrm{NH}_{3}+3 \mathrm{Ca}(\mathrm{ClO})_{2} \rightarrow 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CaCl}_{2}
$$

A. H is oxidized and N is reduced
B. N is oxidized and Cl is reduced
C. N is oxidized and O is reduced
D. Cl is oxidized and O is reduced
28. How many total electrons are transferred in the following reaction?
$4 \mathrm{P}(\mathrm{s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})$
A. 5
B. 10
C. 15
D. 20
29. Which one of the following is a redox reaction?
A. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
B. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbBr}_{2}(\mathrm{~s})$
C. $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
D. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
30. Which of the following equations does not represent an oxidation-reduction reaction?
A. $3 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 3 \mathrm{H}_{2}+\mathrm{AlCl}_{3}$
B. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
C. $2 \mathrm{NaCl}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbCl}_{2}+3 \mathrm{NaNO}_{3}$
D. $2 \mathrm{NaI}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}$
31. In the following chemical reaction the oxidizing agent is

$$
5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}
$$

A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. MnO_{4}^{-}
C. H^{+}
D. Mn^{2+}
\qquad 32. Identify the oxidizing agent in the following chemical reaction.
$2 \mathrm{MnO}_{4}{ }^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}$
A. MnO_{4}^{-}
B. $\mathrm{H}_{2} \mathrm{SO}_{3}$
C. Mn^{2+}
D. $\mathrm{SO}_{4}{ }^{2-}$
33. Identify the reducing agent in the following chemical reaction.
$5 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. Fe^{2+}
B. MnO_{4}^{-}
C. H^{+}
D. Mn^{2+}
34. What element is oxidized in the following chemical reaction?
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
A. Cu
B. H
C. N
D. O
\qquad 35. What element is reduced in the following chemical reaction?
$\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A. Cu
B. H
C. S
D. O
36. Predict the products of the following single replacement reaction.
$\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow$
A. $\mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{4}(\mathrm{aq})$
B. $\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}(\mathrm{s})+\mathrm{SO}_{4}(\mathrm{aq})$
C. $\mathrm{CuS}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
D. $\mathrm{FeCuSO}_{4}(\mathrm{aq})$
37. Predict the products of the following single replacement reaction.
$\mathrm{Zn}(\mathrm{s})+\mathrm{CoCl}_{2}(\mathrm{aq}) \rightarrow$
A. No reaction occurs
B. $\mathrm{Co}(\mathrm{s})+\mathrm{ZnCl}_{2}(\mathrm{aq})$
C. $\operatorname{CoCl}(\mathrm{aq})+\mathrm{ZnCl}(\mathrm{aq})$
D. $\mathrm{ZnCo}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})$
\qquad 38. Which of the following is an example of a disproportionation reaction?
A. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
39. Which of the following represents a precipitation reaction?
A. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
C. $2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
D. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
40. Which of the following represents an acid-base neutralization reaction?
A. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
B. $\quad \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{~g})$
C. $\mathrm{LiOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
41. Which of the following represents a combustion reaction?
A. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{LiOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
42. What type of reaction is the following?

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. Combination reaction
B. Acid-base neutralization reaction
C. Hydrogen displacement reaction
D. Disproportionation reaction
43. What mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose) is needed to prepare $450 . \mathrm{mL}$ of a 0.650 M solution of glucose in water?
A. 0.293 g
B. 293 g
C. 0.692 g
D. 52.7 g
44. What mass of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is needed to prepare 200. mL of a solution having a potassium ion concentration of 0.150 M ?
A. 4.15 g
B. 10.4 g
C. 13.8 g
D. 2.07 g
45. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting solution?
A. 21.8 M
B. $\quad 0.459 \mathrm{M}$
C. $2.18 \times 10^{-2} \mathrm{M}$
D. $8.72 \times 10^{-2} \mathrm{M}$
46. A 4.691 g sample of MgCl_{2} is dissolved in enough water to give $750 . \mathrm{mL}$ of solution. What is the magnesium ion concentration in this solution?
A. $3.70 \times 10^{-2} \mathrm{M}$
B. $1.05 \times 10^{-2} \mathrm{M}$
C. $6.57 \times 10^{-2} \mathrm{M}$
D. $4.93 \times 10^{-2} \mathrm{M}$
47. 35.0 mL of 0.255 M nitric acid is added to 45.0 mL of $0.328 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$. What is the concentration of nitrate ion in the final solution?
A. $\quad 0.481 \mathrm{M}$
B. $\quad 0.296 \mathrm{M}$
C. 0.854 M
D. 1.10 M
48. 17.5 mL of a $0.1050 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is added to 46.0 mL of 0.1250 M NaCl . What is the concentration of sodium ion in the final solution?
A. 0.205 M
B. $\quad 0.119 \mathrm{M}$
C. 0.539 M
D. 0.148 M
49. A 350 . mL solution of $0.150 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$ is mixed with a solution of $230 . \mathrm{mL}$ of $0.240 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$. How many moles of $\mathrm{H}^{+}(\mathrm{aq})$ are present in the final solution?
A. 0.0525 moles H^{+}
B. 0.108 moles H^{+}
C. 0.186 moles H^{+}
D. 0.0539 moles H^{+}
50. When 38.0 mL of $0.1250 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 100 . mL of a solution of PbI_{2}, a precipitate of PbSO 4 forms. The PbSO_{4} is then filtered from the solution, dried, and weighed. If the recovered PbSO_{4} is found to have a mass of 0.0471 g , what was the concentration of iodide ions in the original solution?
A. $3.10 \times 10^{-4} \mathrm{M}$
B. $1.55 \times 10^{-4} \mathrm{M}$
C. $6.20 \times 10^{-3} \mathrm{M}$
D. $3.11 \times 10^{-3} \mathrm{M}$
51. What volume (mL) of a $0.3428 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ solution is required to completely neutralize 23.55 mL of a $0.2350 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$ solution?
A. 55.34 mL
B. $\quad 11.07 \mathrm{~mL}$
C. $\quad 16.14 \mathrm{~mL}$
D. 32.29 mL

- 52. One method of determining the concentration of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ in a solution is through titration with the iodide ion. The net ionic equation for this reaction is
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A 50.00 mL sample of a hydrogen peroxide solution is found to react completely with 37.12 mL of a 0.1500 M KI solution. What is the concentration of hydrogen peroxide in the sample?
A. $5.568 \times 10^{-2} \mathrm{M}$
B. 0.2227 M
C. $\quad 0.1010 \mathrm{M}$
D. 0.4041 M

53. Lithium metal dissolves in water to yield hydrogen gas and aqueous lithium hydroxide. What is the final concentration of hydroxide ions when 5.500 g of lithium metal is dropped into 750 mL of water?
A. $\quad 1.06 \mathrm{M}$
B. $\quad 0.528 \mathrm{M}$
C. 2.11 M
D. 0.792 M
54. When solid iron(II) hydroxide is added to water, the resulting solution contains $1.4 \times 10^{-3} \mathrm{~g}$ of dissolved iron(II) hydroxide per liter of solution. What is the hydroxide ion concentration in this solution?
A. $7.8 \times 10^{-6} \mathrm{M}$
B. $1.6 \times 10^{-5} \mathrm{M}$
C. $2.5 \times 10^{-10} \mathrm{M}$
D. $3.1 \times 10^{-5} \mathrm{M}$
55. A $250 . \mathrm{mL}$ sample of 0.0328 M HCl is partially neutralized by the addition of $100 . \mathrm{mL}$ of 0.0245 M NaOH . Find the concentration of hydrochloric acid in the resulting solution.
A. $\quad 0.00700 \mathrm{M}$
B. 0.0164 M
C. $\quad 0.0383 \mathrm{M}$
D. 0.0230 M

Short Answer

1. Define the terms solution, solute, and solvent.
2. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
3. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: $\mathrm{NH}_{4} \mathrm{NO}_{3}$
4. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: $\mathrm{H}_{2} \mathrm{CO}_{3}$
5. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: NH_{3}.
6. Identify the precipitate(s) formed when solutions of $\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}), \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, and $\mathrm{NH}_{4} \mathrm{ClO}_{3}(\mathrm{aq})$ are mixed.
7. Give an example of a monoprotic acid.
8. Give an example of a diprotic acid.
9. Give an example of a triprotic acid.
10. Identify the element being oxidized in the following reaction.

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

11. Identify the element being reduced in the following reaction.

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

12. Identify the oxidizing agent in the following reaction.

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

13. Identify the reducing agent in the following reaction.

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

14. Identify the oxidizing agent in the following reaction.

$$
2 \mathrm{KBr}+\mathrm{F}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KF}
$$

15. Identify the reducing agent in the following reaction.

$$
2 \mathrm{KBr}+\mathrm{F}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KF}
$$

16. Determine the oxidation number of each of the elements in BaNaPO_{4} ?
17. Batteries in our cars generate electricity by the following chemical reaction.
$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Which substance is reduced in this process?
18. Batteries in our cars generate electricity by the following chemical reaction.

$$
\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

What is the reducing agent in this process?
19. Batteries in our cars generate electricity by the following chemical reaction.
$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Which substance is oxidized in this process?
20. Batteries in our cars generate electricity by the following chemical reaction.

$$
\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

What is the oxidizing agent in this process?
21. Categorize the following reaction as an acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation reaction.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

22. Categorize the following reaction as an acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation reaction.

$$
\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})
$$

23. Categorize the following reaction as an acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation reaction.

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

24. Categorize the following reaction as an acid-base neutralization, precipitation, combination, decomposition, combustion, displacement, or disproportionation reaction.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

25. What is the molarity of a solution that contains 5.0 moles of solute in 2.00 liters of solution?
26. The solubility of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is 130.5 grams per liter at $0^{\circ} \mathrm{C}$. How many moles of dissolved salt are present in 4.0 liters of a saturated solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ at $0^{\circ} \mathrm{C}$?
27. What is the molar concentration of chloride ions in a solution prepared by mixing 100 mL of 2.0 M KCl with $50 . \mathrm{mL}$ of a $1.5 \mathrm{M} \mathrm{CaCl}_{2}$ solution?
28. What volume of concentrated nitric acid $(15.0 \mathrm{M})$ is required to make $100 . \mathrm{mL}$ of a 3.0 M nitric acid solution?
29. During a titration the following data were collected. A $10 . \mathrm{mL}$ portion of an unknown monoprotic acid solution was titrated with $1.0 \mathrm{M} \mathrm{NaOH} ; 40$. mL of the base were required to neutralize the sample. What is the molarity of the acid solution?
30. If 145 grams of potassium nitrate were added to water to make $1,500 \mathrm{~mL}$ of solution. What would the molarity of the resulting solution be?
31. During a titration the following data were collected. A 50.0 mL portion of an HCl solution was titrated with $0.500 \mathrm{M} \mathrm{NaOH} ; 200 . \mathrm{mL}$ of the base was required to neutralize the sample. How many grams of HCl are present in $500 . \mathrm{mL}$ of this acid solution?
32. Which substance is acting as a Brønsted acid in the following reaction?

$$
\mathrm{HSO}_{4}^{-}+\mathrm{NH}_{4}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{3}
$$

33. Identify the Brønsted acid in the following reaction.

$$
\mathrm{HSO}_{4}^{-}+\mathrm{NH}_{4}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{3}
$$

34. Write the balanced molecular and net ionic equations for the reaction that would occur between $\mathrm{CaCl}_{2}(\mathrm{aq})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
35. Write the balanced molecular and net ionic equations for the reaction that would occur between $\mathrm{Al}(\mathrm{s})$ and $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
36. A piece of copper metal was added to an aqueous solution of silver nitrate, and within a few minutes it was observed that a grey crystalline solid formed on surface of the copper. The solution turned a blue color characteristic of copper(II) ions.Write the balanced chemical equation for this reaction.
37. A piece of lead metal was added to an aqueous solution of copper(II) nitrate, and within a few minutes it was observed that the lead turned black and crumbled. The characteristic blue solution of copper (II) ions had faded.. (NOTE: Lead forms a $2+$ ion when it reacts.)Write the balanced chemical equation for this reaction.
38. A piece of zinc metal was added to an aqueous solution of lead(II) nitrate. After some time it was observed that the zinc metal appeared to fall apart and a solid had accumulated at the bottom of the reaction vessel.

Write the net ionic equation for this reaction.
39. The following experiments were carried out and observations recorded.

Expt. \#1: copper metal was added to an aqueous solution of silver nitrate
Observation: The copper become coated with a substance.
Expt. \#2: lead metal was added to an aqueous solution of copper(II) nitrate
Observation: The lead turned black and crumbled.
Expt. \#3: zinc metal was added to an aqueous solution of lead(II) nitrate
Observation: The zinc appeared to fall apart.

Rank the metals from most active to least active.

True/False

Indicate whether the statement is true or false.
\qquad 1. Sugar dissolves in water, therefore it is a strong electrolyte.
2. Silver chloride (AgCl) has an extremely low solubility in water; therefore, it is a weak electrolyte.
3. Most compounds containing chlorides, bromides, and iodides are soluble except those containing $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+}.
\qquad 4. The following equation is an example of a net ionic equation.

$$
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

\qquad 5. The oxidation number of iodine increases by 6 in the following reaction.

$$
2 \mathrm{MnO}_{4}^{-}+\mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+\mathrm{IO}_{3}^{-}+2 \mathrm{OH}^{-}
$$

\qquad 6. A weak acid or a weak base ionizes completely.

Chapter 4

Answer Section

MULTIPLE CHOICE

1. ANS: C

OBJ: EK.2.A. 3
2. ANS: D

OBJ: EK.2.A. 3
3. ANS: D

OBJ: EK.3.C. 1
4. ANS: C

OBJ: EK.3.C. 1
5. ANS: D

OBJ: EK.3.C. 1
6. ANS: B

OBJ: EK.3.C. 1
7. ANS: D

OBJ: EK.3.C. 1
8. ANS: D

OBJ: EK.3.C. 1
9. ANS: C

OBJ: EK.3.C. 1
10. ANS: A

OBJ: EK.3.C. 1
11. ANS: A

OBJ: EK.3.C. 1
12. ANS: B

OBJ: EK.3.A. 1
13. ANS: D

OBJ: EK.3.A. 1
14. ANS: B

OBJ: EK.3.B. 2
15. ANS: A

OBJ: EK.3.B. 2
16. ANS: B

OBJ: EK.3.B. 2
17. ANS: C

OBJ: EK.3.B. 2
18. ANS: C OBJ: EK.3.B. 2
19. ANS: D OBJ: EK.3.A. 1
20. ANS: A OBJ: EK.3.B. 3

PTS: 1

PTS: 1

PTS: 1
PTS: 1
PTS: 1

PTS: 1

PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1

PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1

DIF: Easy
DIF: Medium
DIF: Medium
DIF: Medium
DIF: Medium
DIF: Medium
DIF: Medium
DIF: Easy
DIF: Easy
DIF: Easy
DIF: Easy
DIF: Easy
DIF: Medium
DIF: Medium

REF: Section: 4.1
REF: Section: 4.1
REF: Section: 4.1
REF: Section: 4.1
REF: Section: 4.2
REF: Section: 4.3
REF: Section: 4.4
21. ANS: A

OBJ: EK.3.B. 3
22. ANS: D

OBJ: EK.3.B. 3
23. ANS: D

OBJ: EK.3.B. 3
24. ANS: C

OBJ: EK.3.B. 3
25. ANS: D

OBJ: EK.3.B. 3
26. ANS: D

OBJ: EK.3.B. 3
27. ANS: B

OBJ: EK.3.B. 3
28. ANS: D

OBJ: EK.3.B. 3
29. ANS: A

OBJ: EK.3.B. 3
30. ANS: C

OBJ: EK.3.B. 3
31. ANS: B

OBJ: EK.3.B. 3
32. ANS: A

OBJ: EK.3.B. 3
33. ANS: A

OBJ: EK.3.B. 3
34. ANS: A

OBJ: EK.3.B. 3
35. ANS: C

OBJ: EK.3.B. 3
36. ANS: A

OBJ: EK.3.C. 1
37. ANS: B

OBJ: EK.3.C. 1
38. ANS: C

OBJ: EK.3.B. 3
39. ANS: B

OBJ: EK.3.C. 1
40. ANS: C

OBJ: EK.3.B. 2
41. ANS: A

OBJ: EK.3.B. 1
42. ANS: B

OBJ: EK.3.B. 2
43. ANS: D

OBJ: EK.2.A. 3
44. ANS: D

OBJ: EK.2.A. 3

PTS: 1
PTS: 1
PTS: 1
PTS: 1

PTS: 1
PTS: 1

PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1

DIF: Medium
DIF: Medium
DIF: Medium
DIF: Easy
DIF: Medium
DIF: Easy
DIF: Easy
DIF: Easy
DIF: Medium
DIF: Medium
DIF: Medium

REF: Section: 4.4

REF: Section: 4.4
REF: Section: 4.4
REF: Section: 4.4
REF: Section: 4.4

REF: Section: 4.4
REF: Section: 4.4
REF: Section: 4.4

REF: Section: 4.2
REF: Section: 4.3
REF: Section: 4.4
REF: Section: 4.4
REF: Section: 4.5
REF: Section: 4.5
45. ANS: D

OBJ: EK.2.A.3
46. ANS: C

OBJ: EK.2.A. 3
47. ANS: A

OBJ: EK.2.A. 3
48. ANS: D

OBJ: EK.2.A. 3
49. ANS: B

OBJ: EK.2.A. 3
50. ANS: D

OBJ: EK.2.A. 3
51. ANS: D

OBJ: EK.2.A. 3
52. ANS: A

OBJ: EK.2.A. 3
53. ANS: A

OBJ: EK.2.A. 3
54. ANS: D

OBJ: EK.2.A. 3
55. ANS: B

OBJ: EK.2.A. 3

PTS: 1

DIF: Easy REF: Section: 4.5
DIF: Medium REF: Section: 4.5
DIF: Difficult REF: Section: 4.6
DIF: Medium REF: Section: 4.7
DIF: Medium REF: Section: 4.8
DIF: Medium REF: Section: 4.8
DIF: Difficult REF: Section: 4.5
DIF: Difficult
REF: Section: 4.7

SHORT ANSWER

1. ANS:

A solution is a homogeneous mixture of two or more substances.
The substance present in a smaller amount is called the solute, while the substance present in the larger amount is called the solvent.

PTS: 1 DIF: Easy REF: Section: 4.1 OBJ: EK.2.A. 3
2. ANS:
strong electrolyte

PTS: 1
DIF: Easy
REF: Section: 4.1 OBJ: EK.2.A. 3
3. ANS:
strong electrolyte

PTS: 1 DIF: Easy REF: Section: 4.1 OBJ: EK.2.A. 3
4. ANS:
weak electrolyte

PTS: 1
DIF: Easy
REF: Section: 4.3 OBJ: EK.2.A. 3
5. ANS:
weak electrolyte

PTS: 1 DIF: Medium REF: Section: 4.1 OBJ: EK.2.A. 3
6. ANS:
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

PTS: 1 DIF: Medium REF: Section: 4.2 OBJ: EK.3.C. 1
7. ANS:
HNO_{3} (for example)

PTS: 1 DIF: Easy REF: Section: 4.3 OBJ: EK.3.B.2
8. ANS:
$\mathrm{H}_{2} \mathrm{CO}_{3}$ (for example)
PTS: 1 DIF: Easy REF: Section: 4.3 OBJ: EK.3.B.2
9. ANS:
$\mathrm{H}_{3} \mathrm{PO}_{4}$

PTS: 1 DIF: Easy REF: Section: 4.3 OBJ: EK.3.B. 2
10. ANS:

Al

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 3
11. ANS:

O

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 3
12. ANS:
O_{2}

PTS: 1
DIF: Medium
REF: Section: 4.4 OBJ: EK.3.B. 3
13. ANS:

Al

PTS: 1
DIF: Medium
REF: Section: 4.4 OBJ: EK.3.B. 3
14. ANS:
F_{2}

PTS: 1
DIF: Medium
REF: Section: 4.4 OBJ: EK.3.B. 3
15. ANS:
$\mathrm{Br}-($ or KBr$)$

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 3
16. ANS:
the oxidation number of $\mathrm{Ba}+2$; the oxidation number of Na is +1 ; the oxidation number of P is +5 ; the oxidation number of O is -2

PTS: 1 DIF: Easy REF: Section: 4.4 OBJ: EK.3.B.3
17. ANS:
Pb^{4+}

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 3
18. ANS:

Pb

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 3
19. ANS:

Pb

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 3
20. ANS:
PbO_{2}

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 3
21. ANS:

Combustion

PTS: 1
DIF: Medium
REF: Section: 4.4 OBJ: EK.3.B. 1
22. ANS:

Precipitation

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.C. 1
23. ANS:

Decomposition

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 1
24. ANS:

Acid-base neutralization

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.B. 2
25. ANS:
2.5 M

PTS: 1 DIF: Easy REF: Section: 4.5 OBJ: EK.2.A. 3
26. ANS:
2.0 moles

PTS: 1 DIF: Medium REF: Section: 4.5 OBJ: EK.2.A. 3
27. ANS:
2.3 M

PTS: 1 DIF: Difficult REF: Section: 4.5 OBJ: EK.2.A. 3
28. ANS:
20. mL

PTS: 1 DIF: Medium REF: Section: 4.5 OBJ: EK.2.A. 3
29. ANS:
4.0 M

PTS: 1 DIF: Medium REF: Section: 4.7 OBJ: EK.2.A. 3
30. ANS:
0.956 M

PTS: 1
DIF: Medium
REF: Section: 4.5 OBJ: EK.2.A. 3
31. ANS:
36.5 g

PTS: 1
DIF: Medium
REF: Section: 4.7 OBJ: EK.3.A. 2
32. ANS:

NH4+

PTS: 1 DIF: Medium REF: Section: 4.3 OBJ: EK.3.B.2
33. ANS:
$\mathrm{H}_{2} \mathrm{O}$

PTS: 1
DIF: Medium
REF: Section: 4.3 OBJ: EK.3.B. 2
34. ANS:

Molecular equation: $\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$
Net ionic equation: $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
PTS: 1 DIF: Medium REF: Section: 4.2 OBJ: EK.3.A. 1
35. ANS:

Molecular equation: $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{Co}(\mathrm{s})$
Net ionic equation: $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Co}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Co}(\mathrm{s})$
PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.A. 1
36. ANS:
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.C. 1
37. ANS:
$\mathrm{Pb}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$

PTS: 1 DIF: Medium REF: Section: 4.4 OBJ: EK.3.C. 1
38. ANS:
$\mathrm{Zn}(\mathrm{s})+\mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s})$

PTS: 1 DIF: Difficult REF: Section: 4.4 OBJ: EK.3.C. 1
39. ANS:
most active Zn , next most active Pb , next most active Cu , least active Ag

PTS: 1 DIF: Difficult REF: Section: 4.4 OBJ: EK.3.B. 3

TRUE/FALSE

1. ANS.

OBJ: EK.2.D.1
2. ANS: F

OBJ: EK.2.D. 1
3. ANS: T

OBJ: EK.2.D. 1
4. ANS: F OBJ: EK.3.A. 1
5. ANS: T OBJ: EK.3.B. 3
6. ANS: F

OBJ: EK.6.A. 1

PTS: 1 DIF: Medium
PTS: 1 DIF: Medium
DIF: Easy REF: Section: 4.2
DIF: Medium

DIF: Medium
DIF: Medium

REF: Section: 4.1
REF: Section: 4.1

REF: Section: 4.2
REF: Section: 4.4
REF: Section: 4.3

